
Trunk-based development is a software development practice where all developers work on a single branch,

often referred to as the "trunk" or "main" branch. This approach contrasts with other branching strategies,

such as Git Flow, where developers create multiple long-lived branches for features, releases, or hotfixes.

Single Branch: Developers commit their changes directly to the main branch. This reduces the

complexity of managing multiple branches and merges.

Frequent Commits: Developers are encouraged to commit small, incremental changes frequently. This

helps in identifying issues early and reduces the risk of large, complex merges.

Continuous Integration: Trunk-based development is often paired with continuous integration (CI)

practices. Automated tests are run on every commit to ensure that the codebase remains stable.

Feature Flags: To manage incomplete features without affecting the main branch's stability, developers

use feature flags. This allows them to toggle features on or off without deploying separate branches.

Short-lived Feature Branches: If feature branches are used, they are short-lived and merged back into

the trunk as soon as possible. This minimizes the divergence from the main branch.

Trunk-Based Development

Trunk-based development - Atlassian

Frequent Commits: Commit small, incremental changes frequently to the main branch. This helps in

identifying issues early and reduces the risk of large, complex merges.

Continuous Integration: Ensure that every commit triggers automated tests to verify the stability of the

codebase. This practice helps catch integration issues early.

Use Feature Flags: Implement feature flags to manage incomplete features. This allows you to merge

code into the trunk without exposing unfinished features to users.

Short-Lived Branches: If feature branches are necessary, keep them short-lived. Merge them back into

the trunk as soon as possible to minimize divergence and potential conflicts.

Automated Testing: Maintain a robust suite of automated tests, including unit tests and integration

tests, to ensure code quality and functionality.

Code Reviews: Conduct regular code reviews to maintain code quality, share knowledge, and ensure

adherence to coding standards. This also helps in catching potential issues early.

Communication and Collaboration: Foster open communication within the team to ensure everyone is

aligned with the project goals and aware of ongoing changes. This helps in avoiding duplicate work and

conflicts.

Trunk Based Development

Key Characteristics of Trunk-Based Development

References

Roles and Responsibilities for Developers

https://trunkbaseddevelopment.com/
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development

Maintain a Releasable Trunk: Keep the trunk in a releasable state at all times. This practice supports

continuous deployment and allows for quick responses to market changes.

Cultivate a CI Culture: Encourage a culture of continuous integration where developers are committed

to integrating their work frequently and validating changes through automated builds.

Manage Feature Toggles: Regularly review and retire unused feature toggles to prevent them from

cluttering the codebase and complicating the development process.

We will use the following prefixes following with a Slash /

ftr/, for Feature branch.

bgfx/, for Bug Fix branch.

htfx/, for Hot Fix branch.

refactor/, for Refactoring branches.

doc/, for Documentation branches.

enh/, for Enhancement branches.

dev/, for Experimental branches - for POCs, trying new library, new implementation of existed feature -

.

Branch name should contains, Jira Ticket Number and a short descriptor of the task with hyphens (-) as

separators

Example: ftr/WCA-78453-create-login-form , this is important to have the Jira Ticket Number in

the branch name to make it easier to identify the branch and the task. and also to reflect in the Jira

Platform.

Tags name should contains only version number v1.0.2 ,

Frontend solution use commitlint as a checker for the commit message. You can commit through two ways

only

1- VSCode

Prefixes, Branches and tags name

How to write a commit [ref]

https://github.com/conventional-changelog/commitlint
https://udacity.github.io/git-styleguide/

2- command-line

Here is how to write a commit message, and you cannot push your commit unless you follow the pattern

The type value must be one of: [build, chore, ci, docs, feat, fix, perf, refactor, revert, style, test]

The scope value must be one of:

feat(scope): short subject

body

footer

[
 "docs",
 "solution",
 "web_root",
 "web_nav",
 "web_admin",
 "web_pm",
 "web_mt",
 "shared_ui",
 "shared_tui",

Copy

Scope will has a new values if we have a new projects in the future, for each new project we should

add a new value for the scope in .commitlint.json file.

While you are creating, GitHub will load for you a list of templates, you can use them to create a PR. Select

the template you want to use.

Now we have husky configuration for the branch name and commit message, it will check if the branch

name and commit message are valid before you commit or push your code.

For branch name, it will check if the branch name is valid and if it contains the Jira Ticket Number and a

short descriptor of the task with hyphens (-) as separators.

For commit message, it will check if the commit message is valid and if it contains the type, scope,

short subject, body, and footer.

We will use the rebase strategy for merging the branch to the main branch. Also you have to squash your

commits before merging to the main branch.

 "shared_icons",
 "shared_helpers",
 "shared_comps"
]

How to write a PR

Husky

Merging Strategy

Copy

